23662 measured reflections

 $R_{\rm int} = 0.024$

5994 independent reflections

5154 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2E)-3-[3-(Benzyloxy)phenyl]-1-(2hydroxyphenyl)prop-2-en-1-one

Hoong-Kun Fun,^a* # Wan-Sin Loh,^a§ B. K. Sarojini,^b V. Musthafa Khaleel^b and B. Narayana^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Chemistry, P. A. College of Engineering, Mangalore 574 153, India, and ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India Correspondence e-mail: hkfun@usm.my

Received 25 April 2011; accepted 28 April 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.126; data-to-parameter ratio = 26.5.

In the title compound, C₂₂H₁₈O₃, an intramolecular O-H...O hydrogen bond stabilizes the molecular structure, forming an S(6) ring motif. The central benzene ring forms a dihedral angle of $64.74(5)^{\circ}$ with the phenyl ring and a dihedral angle of $5.58(5)^{\circ}$ with the terminal benzene ring. In the crystal, molecules are linked into columns along the *a* axis via intermolecular C-H···O hydrogen bonds. C-H··· π interactions involving the centroid of the hydroxy-substituted benzene ring further stabilize the crystal structure.

Related literature

For the background to chalcones, see: Awad et al. (1960); Coudert et al. (1988); Insuasty et al. (1992, 1997); Kolos et al. (1996); Samshuddin et al. (2010); Fun et al. (2010); Sarojini et al. (2006); Shettigar et al. (2010); Sharma et al. (1997); Ravishankar et al. (2003, 2005); Butcher et al. (2006); Narayana et al. (2007); Sarojini et al. (2007a,b); Jasinski et al. (2011). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

[‡] Thomson Reuters ResearcherID: A-3561-2009.

Experimental

Crystal data

C ₂₂ H ₁₈ O ₃	V = 1643.12 (4) Å ³
$M_r = 330.36$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 6.6343 (1) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 35.7706 (5) Å	$T = 100 { m K}$
c = 8.1537 (1) Å	$0.46 \times 0.41 \times 0.28 \text{ mm}$
$\beta = 121.879 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\rm min}=0.960,\;T_{\rm max}=0.976$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	226 parameters
$wR(F^2) = 0.126$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
5994 reflections	$\Delta \rho_{\min} = -0.21 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C17-C22 benzene ring.

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdots A$	$D{\cdots}A$	$D - \mathbf{H} \cdots \mathbf{A}$
O3-H1···O2	0.96	1.62	2.5121 (11)	152
$C5-H5A\cdots O3^{i}$	0.93	2.47	3.3912 (13)	170
$C18-H18A\cdots O3^{ii}$	0.93	2.48	3.1235 (16)	127
$C7 - H7B \cdots Cg1^{i}$	0.97	2.75	3.6633 (11)	158

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x - 1, y, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship. VMK thanks P. A. College of Engineering for the research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5129).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Int. Ed. Engl. 34, 1555-1573. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633-o1635.

[§] Thomson Reuters ResearcherID: C-7581-2009.

Awad, W., El-Neweihy, M. & Selim, F. (1960). J. Org. Chem. 25, 1333-1336. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

Coudert, P., Couquelet, J. & Tronche, P. (1988). J. Heterocycl. Chem. 25, 799-802

- Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, 0864–0865.
- Insuasty, B., Abonia, R. & Quiroga, J. (1992). An. Quim. 88, 718-720.
- Insuasty, B., Quiroga, J. & Meier, H. (1997). Trends Heterocycl. Chem. 5, 83-89.
- Jasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, 0795.
- Kolos, N., Orlov, V., Arisa, D., Shishkin, O., Struchkov, T. & Vorobiova, N. (1996). Khim. Geterotsikl. Soedin. pp. 87–95; Chem. Abstr. 125, 195600.
- Narayana, B., Lakshmana, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Private communication.
- Ravishankar, T., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005). *Acta Cryst.* E61, o405–o407.
- Ravishankar, T., Chinnakali, K., Nanjundan, S., Selvamalar, C. S. J., Ramnathan, A., Usman, A. & Fun, H.-K. (2003). Acta Cryst. E59, o1143– 01145.

- Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). *Acta Cryst.* E66, o1279–o1280.
- Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, **295**, 54–59.
- Sarojini, B. K., Narayana, B., Mayekar, A. N., Yathirajan, H. S. & Bolte, M. (2007a). Acta Cryst. E63, 04447.
- Sarojini, B. K., Yathirajan, H. S., Mustafa, K., Sarfraz, H. & Bolte, M. (2007b). Acta Cryst. E63, 04448.
- Sharma, N. K., Kumar, R., Parmar, V. S. & Errington, W. (1997). Acta Cryst. C53, 1438–1440.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shettigar, S., Poornesh, P., Umesh, G., Sarojini, B. K., Narayana, B. & Prakash Kamath, K. (2010). Opt. Laser Technol. 42, 1162–1166.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2011). E67, o1313-o1314 [doi:10.1107/S160053681101614X]

(2E)-3-[3-(Benzyloxy)phenyl]-1-(2-hydroxyphenyl)prop-2-en-1-one

H.-K. Fun, W.-S. Loh, B. K. Sarojini, V. M. Khaleel and B. Narayana

Comment

Chalcones (1,3-diarylpropenones) have been widely used as starting materials in numerous synthetic reactions (Awad *et al.*, 1960; Coudert *et al.*, 1988) including the preparation of fused ring heterocyclic compounds (Insuasty *et al.*, 1992, 1997; Kolos *et al.*, 1996; Samshuddin *et al.*, 2010; Fun *et al.*, 2010). Chalcones are also finding application as organic nonlinear optical materials (NLO) for their SHG conversion efficiency (Sarojini *et al.*, 2006; Shettigar *et al.*, 2010). The crystal structures of some of the related chalcones *viz*: 1-(3,4-dimethoxyphenyl)-3-(3-methylphenyl)prop-2-en-1-one (Sharma *et al.*, 1997), 3-(3,4-dimethoxyphenyl)-1-(4-hydroxy-phenyl)prop-2-en-1-one (Ravishankar *et al.*, 2003), 1-(4-chlorophenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one (Ravishankar *et al.*, 2006), 3-(2-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (Narayana *et al.*, 2007), (2*E*)-1-(2-hydroxyphenyl)-3-(4-methoxy-phenyl)prop-2-en-1-one, (2*E*)-1-(2-hydroxyphenyl)-3-[4-(methyl-sulfanyl)phenyl]prop-2-en-1-one (Sarojini *et al.*, 2007*a,b*) and (2*E*)-3-(2-anthryl)-1-(2-hydroxyphenyl)prop-2-en-1-one (Jasinski *et al.*, 2011) have been reported. In a continuation of our studies of the structures of chalcones, we report the crystal structure of a new chalcone, (2*E*)-3-(3-benzyloxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one, C₂₂H₁₈O₃, (I).

The molecular strucure of (I) is shown in Fig. 1. An intramolecular O3—H1···O2 hydrogen bond (Table 1) stabilized the molecular structure, forming an S(6) ring motif (Bernstein *et al.*, 1995). The (C8–C13) benzene ring forms a dihedral angle of 64.74 (5)° with the C1–C6 phenyl ring and is almost co-planar with the C17–C22 phenyl ring with a dihedral angle of 5.58 (5)°. Bond lengths (Allen *et al.*, 1987) and angles are within the normal ranges.

In the crystal packing (Fig. 2), the molecules are linked into columns along the *a* axis *via* intermolecular C5—H5A···O3 and C18—H18A···O3 hydrogen bonds (Table 1). C–H··· π interactions (Table 1) involving the centroids of C17–C22 rings (*Cg*1) further stabilize the crystal structure.

Experimental

2-Hydroxyacetophenone (1.36 g, 0.01 mol) was mixed with 4-benzyloxybenzaldehyde (2.12 g, 0.01 mol) and dissolved in ethanol (40 ml). To this solution 4 ml of KOH (50%) was added at 278 K. The reaction mixture was stirred for 8 h and poured onto crushed ice. The pH of this mixture was adjusted to 3–4 with 2 *M* HCl aqueous solution. The resulting crude yellow solid was filtered, washed successively with dilute HCl solution and distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Crystals suitable for X-ray diffraction studies were grown by the slow evaporation of the solution of the compound in ethyl alcohol (*m. p.*: 367–369 K). Composition: Found (calculated) for $C_{22}H_{18}O_3$, C 79.98 (79.93); H: 5.49 (5.52).

Refinement

H1 was located from the difference Fourier map and was fixed at its found position with $U_{iso}(H) = 1.5 U_{eq}(O)$ [O–H = 0.9618 Å]. The remaining H atoms were positioned geometrically and refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$ [C–H = 0.93–0.97 Å].

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the intramolecular hydrogen bond.

Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

(2E)-3-[3-(Benzyloxy)phenyl]-1-(2-hydroxyphenyl)prop-2-en-1-one

Crystal	data
---------	------

$C_{22}H_{18}O_3$
$M_r = 330.36$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 6.6343 (1) Å
<i>b</i> = 35.7706 (5) Å
<i>c</i> = 8.1537 (1) Å
$\beta = 121.879 \ (1)^{\circ}$
$V = 1643.12 (4) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	5994 independent reflections
Radiation source: fine-focus sealed tube	5154 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.024$
ϕ and ω scans	$\theta_{\text{max}} = 32.7^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -10 \rightarrow 9$

$T_{\min} = 0.960, \ T_{\max} = 0.976$	$k = -54 \rightarrow 54$
23662 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.126$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0608P)^2 + 0.6186P]$ where $P = (F_o^2 + 2F_c^2)/3$
5994 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
226 parameters	$\Delta \rho_{max} = 0.47 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.22678 (13)	-0.12255 (2)	0.64011 (11)	0.01788 (14)
O2	1.16788 (13)	0.04531 (2)	0.73546 (11)	0.01926 (15)
O3	1.37772 (13)	0.10727 (2)	0.82954 (12)	0.01960 (15)
H1	1.3290	0.0824	0.7790	0.029*
C1	0.1804 (2)	-0.21718 (3)	0.69912 (16)	0.0233 (2)
H1A	0.3438	-0.2209	0.7668	0.028*
C2	0.0347 (3)	-0.24325 (3)	0.71398 (18)	0.0297 (3)
H2A	0.1013	-0.2641	0.7926	0.036*
C3	-0.2084 (2)	-0.23818 (3)	0.61239 (18)	0.0283 (2)
H3A	-0.3055	-0.2557	0.6219	0.034*
C4	-0.3076 (2)	-0.20672 (3)	0.49557 (17)	0.0238 (2)
H4A	-0.4713	-0.2033	0.4264	0.029*
C5	-0.16259 (19)	-0.18037 (3)	0.48208 (15)	0.01870 (18)
H5A	-0.2296	-0.1593	0.4053	0.022*

C6	0.08311 (18)	-0.18549 (3)	0.58347 (14)	0.01668 (17)
C7	0.24046 (18)	-0.15803 (3)	0.56323 (14)	0.01653 (17)
H7A	0.4030	-0.1670	0.6331	0.020*
H7B	0.1891	-0.1553	0.4282	0.020*
C8	0.37550 (16)	-0.09508 (3)	0.64855 (13)	0.01453 (16)
C9	0.53008 (17)	-0.09903 (3)	0.58253 (14)	0.01643 (17)
H9A	0.5357	-0.1213	0.5262	0.020*
C10	0.67596 (17)	-0.06915 (3)	0.60209 (14)	0.01585 (17)
H10A	0.7794	-0.0719	0.5585	0.019*
C11	0.67167 (16)	-0.03522 (3)	0.68526 (13)	0.01424 (16)
C12	0.51140 (17)	-0.03170 (3)	0.74868 (14)	0.01541 (17)
H12A	0.5032	-0.0093	0.8028	0.018*
C13	0.36650 (17)	-0.06120 (3)	0.73120 (14)	0.01546 (17)
H13A	0.2626	-0.0586	0.7744	0.019*
C14	0.83060 (17)	-0.00553 (3)	0.70116 (13)	0.01512 (17)
H14A	0.9183	-0.0100	0.6443	0.018*
C15	0.86482 (17)	0.02778 (3)	0.78915 (14)	0.01564 (17)
H15A	0.7793	0.0338	0.8463	0.019*
C16	1.03580 (16)	0.05459 (3)	0.79541 (13)	0.01431 (16)
C17	1.05437 (16)	0.09259 (3)	0.87343 (13)	0.01351 (16)
C18	0.90277 (17)	0.10566 (3)	0.93231 (14)	0.01700 (17)
H18A	0.7872	0.0898	0.9246	0.020*
C19	0.92093 (19)	0.14160 (3)	1.00144 (15)	0.02028 (19)
H19A	0.8178	0.1497	1.0388	0.024*
C20	1.09498 (19)	0.16556 (3)	1.01480 (15)	0.01988 (19)
H20A	1.1082	0.1897	1.0618	0.024*
C21	1.24825 (18)	0.15361 (3)	0.95848 (14)	0.01802 (18)
H21A	1.3642	0.1697	0.9682	0.022*
C22	1.22862 (16)	0.11736 (3)	0.88693 (13)	0.01474 (17)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0210 (3)	0.0121 (3)	0.0250 (4)	-0.0031 (2)	0.0152 (3)	-0.0037 (3)
O2	0.0199 (3)	0.0171 (3)	0.0267 (4)	-0.0001 (3)	0.0163 (3)	-0.0017 (3)
O3	0.0174 (3)	0.0188 (3)	0.0277 (4)	-0.0011 (3)	0.0154 (3)	-0.0008 (3)
C1	0.0310 (5)	0.0153 (4)	0.0192 (5)	0.0003 (4)	0.0103 (4)	0.0007 (3)
C2	0.0488 (7)	0.0159 (5)	0.0248 (5)	-0.0033 (5)	0.0197 (5)	0.0015 (4)
C3	0.0467 (7)	0.0181 (5)	0.0315 (6)	-0.0120 (5)	0.0284 (5)	-0.0067 (4)
C4	0.0291 (5)	0.0209 (5)	0.0293 (5)	-0.0068 (4)	0.0207 (5)	-0.0066 (4)
C5	0.0239 (5)	0.0151 (4)	0.0212 (4)	-0.0005 (3)	0.0148 (4)	-0.0015 (3)
C6	0.0233 (4)	0.0123 (4)	0.0156 (4)	-0.0013 (3)	0.0110 (3)	-0.0024 (3)
C7	0.0195 (4)	0.0131 (4)	0.0177 (4)	0.0000 (3)	0.0103 (3)	-0.0017 (3)
C8	0.0145 (4)	0.0131 (4)	0.0155 (4)	-0.0004 (3)	0.0076 (3)	-0.0002 (3)
C9	0.0179 (4)	0.0145 (4)	0.0181 (4)	-0.0010 (3)	0.0104 (3)	-0.0028 (3)
C10	0.0167 (4)	0.0157 (4)	0.0165 (4)	-0.0002 (3)	0.0098 (3)	-0.0009 (3)
C11	0.0145 (4)	0.0133 (4)	0.0140 (4)	0.0004 (3)	0.0069 (3)	0.0009 (3)
C12	0.0168 (4)	0.0121 (4)	0.0171 (4)	0.0007 (3)	0.0089 (3)	0.0001 (3)

C13	0.0167 (4)	0.0139 (4)	0.0179 (4)	0.0010 (3)	0.0105 (3)	-0.0001 (3)	
C14	0.0147 (4)	0.0146 (4)	0.0153 (4)	0.0006 (3)	0.0074 (3)	0.0018 (3)	
C15	0.0163 (4)	0.0153 (4)	0.0169 (4)	-0.0005 (3)	0.0098 (3)	0.0005 (3)	
C16	0.0140 (4)	0.0141 (4)	0.0146 (4)	0.0005 (3)	0.0074 (3)	0.0010 (3)	
C17	0.0129 (4)	0.0134 (4)	0.0146 (4)	0.0005 (3)	0.0075 (3)	0.0003 (3)	
C18	0.0166 (4)	0.0177 (4)	0.0193 (4)	0.0002 (3)	0.0113 (3)	-0.0008 (3)	
C19	0.0217 (5)	0.0207 (5)	0.0215 (5)	0.0022 (4)	0.0136 (4)	-0.0025 (3)	
C20	0.0237 (5)	0.0169 (4)	0.0169 (4)	0.0007 (3)	0.0093 (4)	-0.0022 (3)	
C21	0.0184 (4)	0.0157 (4)	0.0178 (4)	-0.0034 (3)	0.0080 (3)	-0.0017 (3)	
C22	0.0130 (4)	0.0162 (4)	0.0146 (4)	0.0004 (3)	0.0070 (3)	0.0011 (3)	
Geometric pa	rameters (Å, °)						
O1—C8		1.3683 (11)	C10-	C11	1.3	978 (13)	
O1—C7		1.4395 (12)	C10-	-H10A	0.9300		
O2—C16		1.2528 (11)	C11-	C12	1.4123 (13)		
O3—C22		1.3477 (11)	C11-	C14	1.4	535 (13)	
O3—H1		0.9618	C12-	C13	1.3833 (13)		
C1—C2		1.3942 (17)	C12-	C12—H12A		0.9300	
C1—C6		1.3956 (14)	C13-	-H13A	0.9300		
C1—H1A		0.9300	C14—C15		1.3	467 (13)	
C2—C3		1.382 (2)	C14-	-H14A	0.9	300	
C2—H2A		0.9300	C15-	C16	1.4	656 (13)	
C3—C4		1.3946 (17)	C15-	-H15A	0.9	300	
С3—НЗА		0.9300	C16-	C17	1.4	780 (13)	
C4—C5		1.3924 (14)	C17-	C18	1.4	038 (13)	
C4—H4A		0.9300	C17-	C22	1.4	139 (13)	
C5—C6		1.3966 (15)	C18-	C19	1.3	833 (14)	
C5—H5A		0.9300	C18-	-H18A	0.9	300	
C6—C7		1.5044 (14)	C19-	C20	1.3	952 (15)	
C7—H7A		0.9700	C19-	-H19A	0.9	300	
С7—Н7В		0.9700	C20-	C21	1.3	860 (15)	
C8—C9		1.3945 (13)	C20-	-H20A	0.9	300	
C8—C13		1.4031 (13)	C21-	C22	1.3	996 (14)	
C9—C10		1.3933 (13)	C21-	-H21A	0.9	300	
С9—Н9А		0.9300					
C8—O1—C7		116.46 (7)	C10-	C11C14	11	8.56 (8)	
С22—О3—Н	1	104.7	C12-		12	3.57 (8)	
C2-C1-C6		120.49 (11)	C13-		12	0.71 (9)	
C2-C1-H14	4	119.8	C13-	C12H12A	11	9.6	
C6-C1-H1A	A	119.8	C11-	C12H12A	11	9.6	
C3—C2—C1		120.24 (11)	C12-	C13C8	12	0.33 (9)	
С3—С2—Н2А	4	119.9	C12-	C13H13A	11	9.8	
C1—C2—H2A	A	119.9	C8—	-C13—H13A	11	9.8	
C2—C3—C4		119.74 (11)	C15-		12	7.18 (9)	
С2—С3—Н3А	4	120.1	C15-		11	5.4	
C4—C3—H3A	4	120.1	C11-	C14H14A	11	5.4	
C5—C4—C3		120.24 (11)	C14-	C15C16	12	0.47 (9)	
C5-C4-H4A	4	119.9	C14-	C15H15A	11	9.8	

C3—C4—H4A	119.9	C16—C15—H15A	119.8
C4—C5—C6	120.25 (10)	O2—C16—C15	120.07 (9)
С4—С5—Н5А	119.9	O2-C16-C17	119.68 (8)
С6—С5—Н5А	119.9	C15-C16-C17	120.26 (8)
C1—C6—C5	119.03 (10)	C18—C17—C22	117.95 (9)
C1—C6—C7	120.27 (9)	C18—C17—C16	122.79 (8)
C5—C6—C7	120.66 (9)	C22—C17—C16	119.25 (8)
O1—C7—C6	108.71 (8)	C19—C18—C17	121.67 (9)
O1—C7—H7A	109.9	C19—C18—H18A	119.2
С6—С7—Н7А	109.9	C17—C18—H18A	119.2
O1—C7—H7B	109.9	C18—C19—C20	119.54 (9)
С6—С7—Н7В	109.9	C18—C19—H19A	120.2
H7A—C7—H7B	108.3	С20—С19—Н19А	120.2
O1—C8—C9	124.44 (8)	C21—C20—C19	120.43 (9)
O1—C8—C13	115.60 (8)	C21—C20—H20A	119.8
C9—C8—C13	119.96 (9)	C19—C20—H20A	119.8
C10—C9—C8	119.09 (9)	C20—C21—C22	120.05 (9)
С10—С9—Н9А	120.5	C20-C21-H21A	120.0
С8—С9—Н9А	120.5	C22—C21—H21A	120.0
C9—C10—C11	122.04 (9)	O3—C22—C21	117.97 (9)
C9—C10—H10A	119.0	O3—C22—C17	121.68 (9)
C11-C10-H10A	119.0	C21—C22—C17	120.35 (9)
C10-C11-C12	117.87 (8)		
C6—C1—C2—C3	0.73 (17)	C9—C8—C13—C12	-0.39 (14)
C1—C2—C3—C4	-0.38 (17)	C10-C11-C14-C15	-174.62 (9)
C2—C3—C4—C5	-0.40 (17)	C12-C11-C14-C15	5.66 (15)
C3—C4—C5—C6	0.83 (16)	C11-C14-C15-C16	178.92 (9)
C2-C1-C6-C5	-0.30 (15)	C14—C15—C16—O2	-6.92 (14)
C2—C1—C6—C7	-178.15 (10)	C14-C15-C16-C17	173.44 (9)
C4—C5—C6—C1	-0.47 (15)	O2-C16-C17-C18	176.07 (9)
C4—C5—C6—C7	177.37 (9)	C15-C16-C17-C18	-4.29 (14)
C8—O1—C7—C6	174.51 (8)	O2—C16—C17—C22	-2.76 (13)
C1—C6—C7—O1	-117.15 (10)	C15-C16-C17-C22	176.88 (8)
C5—C6—C7—O1	65.04 (11)	C22-C17-C18-C19	0.09 (14)
C7—O1—C8—C9	2.20 (13)	C16—C17—C18—C19	-178.75 (9)
C7—O1—C8—C13	-177.49 (8)	C17—C18—C19—C20	-0.48 (15)
O1—C8—C9—C10	-178.92 (9)	C18-C19-C20-C21	0.32 (16)
C13—C8—C9—C10	0.75 (14)	C19—C20—C21—C22	0.24 (15)
C8—C9—C10—C11	-0.25 (15)	C20—C21—C22—O3	178.42 (9)
C9—C10—C11—C12	-0.60 (14)	C20—C21—C22—C17	-0.64 (14)
C9—C10—C11—C14	179.67 (9)	C18—C17—C22—O3	-178.55 (9)
C10-C11-C12-C13	0.97 (14)	C16—C17—C22—O3	0.33 (14)
C14—C11—C12—C13	-179.32 (9)	C18—C17—C22—C21	0.47 (14)
C11—C12—C13—C8	-0.49 (14)	C16—C17—C22—C21	179.36 (8)
O1—C8—C13—C12	179.31 (8)		

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C17–C22 benzene ring.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H1…O2	0.96	1.62	2.5121 (11)	152
C5—H5A····O3 ⁱ	0.93	2.47	3.3912 (13)	170
C18—H18A····O3 ⁱⁱ	0.93	2.48	3.1235 (16)	127
C7—H7B···Cg1 ⁱ	0.97	2.75	3.6633 (11)	158

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z.

Fig. 2